f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
F1(g1(a)) -> F1(s1(g1(b)))
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
F1(g1(a)) -> F1(s1(g1(b)))
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
G1(x) -> G1(x)
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))
The following pairs can be oriented strictly and are deleted.
The remaining pairs can at least be oriented weakly.
G1(x) -> F1(g1(x))
F1(g1(a)) -> G1(b)
Used ordering: Polynomial interpretation [21]:
G1(x) -> G1(x)
POL(F1(x1)) = 2·x1
POL(G1(x1)) = 1 + 2·x1
POL(a) = 1
POL(b) = 0
POL(f1(x1)) = 0
POL(g1(x1)) = x1
POL(s1(x1)) = 2 + x1
g1(x) -> f1(g1(x))
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
↳ QTRS
↳ DependencyPairsProof
↳ QDP
↳ DependencyGraphProof
↳ QDP
↳ QDPOrderProof
↳ QDP
G1(x) -> G1(x)
f1(g1(a)) -> f1(s1(g1(b)))
f1(f1(x)) -> b
g1(x) -> f1(g1(x))